Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Roger D. Willett

Department of Chemistry, Washington State University, Pullman, WA 99164, USA

Correspondence e-mail: willett@mail.wsu.edu

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.015 Å R factor = 0.041 wR factor = 0.116 Data-to-parameter ratio = 22.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Aqua-di-µ₂-chloro-bis(diethylenetriamine)dicopper(II) dichloride

Reaction of $\operatorname{CuCl}_2(\operatorname{H}_2\operatorname{O})_2$ with diethylenetriamine (henceforth dien) in a 1:1 ratio has led to the formation of a noncentrosymmetric di- μ -chloro bibridged binuclear Cu^{II} species in which a water molecule is coordinated axially to one of the Cu^{II} ions. [$\operatorname{Cu}_2\operatorname{Cl}_2(\operatorname{C4}_{H_13N_3})_2(\operatorname{H}_2\operatorname{O})$] contains dinuclear [(dien)_2\operatorname{Cu}_2\operatorname{Cl}_2(\operatorname{H}_2\operatorname{O})]^{2+} cations and chloride ions. Both Cu^{II} ions in the dimer have a primary coordination sphere that is approximately planar, consisting of one dien molecule and one chloride ion. These monomeric units are linked *via* semicoordinate Cu-Cl bonds to form dinuclear units. One Cu^{II} ion has a 4+1 coordination geometry while the second expands to a 4+2 geometry by the incorporation of a water molecule. The dinuclear cation has crystallographic reflection symmetry, the mirror plane containing the central Cu_2Cl_2 unit and the central N atom of each dien ligand.

Comment

The crystal structure of the title compound, (I), consists of $[Cu_2(dien)_2Cl_2(H_2O)]^{2+}$ cations, as shown in Fig. 1, and Cl^- counter-ions; here dien is diethylenetriamine, a tridentate ligand.

Both Cu atoms have a pseudo-planar primary coordination sphere consisting of the three N atoms from a dien ligand and a Cl⁻ ion. Atom Cu(1) attains an expanded 4+1 coordination geometry by forming a semicoordinate apical bond of 2.676 (1) Å to the Cl⁻ ion bound to Cu(2). The deviation of the primary coordination sphere for Cu(1) is minimal, with Cl(2) displaced only 0.168 Å from the Cu(1)N₃ plane. In contrast, Cu(2) expands its coordination to a 4+2 geometry, with apical Cu–Cl and Cu–OH₂ bonds of 3.018 (1) and 2.608 (3) Å, respectively. In this case, considerable distortion from planarity occurs, with Cl(2) displaced by 0.847 Å from the Cu(2)N₃ plane. This distortion is associated with the difference in the apical Cu–Cl distances for the two Cu atoms. The 4+1 coordination for Cu(1) causes the apical Cu(1)– Received 26 October 2001 Accepted 19 November 2001 Online 30 November 2001

© 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The asymmetric unit of (I) showing ellipsoids at the 50% probability level.

Cl(3) bond to be 0.342 Å shorter than the apical Cu(2)–Cl(2) bond. Because of this distortion, the two Cu–Cl–Cu bond angles differ by 8.5° . The 4+2 coordination for Cu(2) also imposes more rigidity on its dien ligand, as compared to the dien ligand for Cu(1). Here, with the absence of a coordinating ligand in the sixth position, the ethylene arms of the dien ligand show high anisotropic displacement parameters, indicative of unresolved disorder.

The crystal lattice is stabilized by $O-H\cdots$ Cl hydrogen bonds between the semicoordinated water molecule and the lattice chloride, pairs of $N-H\cdots$ Cl bonds between the terminal N atoms (N1 and N11) of the dien ligands and the lattice chloride, as well as $N-H\cdots$ Cl bonds between the central N atoms (N4 and N14) and the bridging Cl atoms of the dinuclear species. These hydrogen-bonding contacts range from 3.132 (O to Cl1) to 3.420 Å (N11 to Cl1).

A centrosymmetric $[Cu_2(dien)_2Cl_2]^{2+}$ dimer has been reported as the nitrate salt (Urtiaga *et al.*, 1996), while a monomeric Cu(dien)I₂ species has been described by Hodgson *et al.* (1991).

Experimental

Stoichiometric quantities of diethylenetriamine and $CuCl_2(H_2O)_2$ were dissolved in a minimum amount of water and a few drops of HCl were added to prevent hydrolysis of the aqueous Cu^{II} ions. The resultant solution was allowed to slowly evaporate at room temperature. Blue crystals were harvested by filtration and washing with cold ethanol.

Crystal data

$[Cu_2Cl_2(C_4H_{13}N_3)_2(H_2O)]$	$D_x = 1.624 \text{ Mg m}^{-3}$
$M_r = 493.24$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/m$	Cell parameters from 34
a = 6.7155 (8) Å	reflections
b = 14.6106 (11) Å	$\theta = 5.9 - 15.0^{\circ}$
c = 10.3011 (8) Å	$\mu = 2.65 \text{ mm}^{-1}$
$\beta = 95.333 \ (10)^{\circ}$	T = 293 (2) K
$V = 1006.34 (16) \text{ Å}^3$	Parallelepiped, blue
Z = 2	$0.30 \times 0.25 \times 0.10 \text{ mm}$

Data collection

Bruker P4 diffractometer ω scans Absorption correction: empirical (*XEMP*; Siemens, 1990) $T_{min} = 0.484, T_{max} = 0.861$ 3012 measured reflections 2243 independent reflections 1948 reflections with $I > 2\sigma(I)$ *Refinement* Refinement on F^2

 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.116$ S = 1.032243 reflections 102 parameters H-atom parameters constrained

Table 1Selected geometric parameters (Å, $^{\circ}$).

Cu1-N1	1.989 (7)	Cu2-N11	2.005 (6)
Cu1-N1 ⁱ	1.990 (7)	Cu2-N14	2.006 (3)
Cu1-N4	2.000 (8)	Cu2-Cl3	2.278 (2)
Cu1-Cl2	2.269 (2)	Cu2-O	2.608 (2)
Cu1-Cl3	2.676 (2)	Cu2-Cl2	3.018 (2)
Cu2-N11 ⁱ	2.005 (6)		
N1-Cu1-N1 ⁱ	160.1 (4)	Cl2-Cu1-Cl3	93.84 (8)
N1-Cu1-N4	84.6 (2)	N11 ⁱ -Cu2-N11	162.6 (3)
N1 ⁱ -Cu1-N4	84.6 (2)	N11 ⁱ -Cu2-N14	84.40 (17)
N1-Cu1-Cl2	94.5 (2)	N11-Cu2-N14	84.40 (17)
N1 ⁱ -Cu1-Cl2	94.5 (2)	N11 ⁱ -Cu2-Cl3	97.00 (17)
N4-Cu1-Cl2	174.1 (2)	N11-Cu2-Cl3	97.00 (17)
N1-Cu1-Cl3	98.53 (18)	N14-Cu2-Cl3	166.53 (9)
N1 ⁱ -Cu1-Cl3	98.53 (18)	Cu2-Cl3-Cu1	94.77 (7)
N4-Cu1-Cl3	92.0 (2)	Cu2-Cl2-Cu1	86.27 (7)

 $R_{\rm int} = 0.051$ $\theta_{\rm max} = 27.5^{\circ}$

 $h = -1 \rightarrow 8$

 $k = -1 \rightarrow 18$

 $l = -13 \rightarrow 13$

3 standard reflections

every 100 reflections

intensity decay: <3%

 $w = 1/[\sigma^2(F_o^2) + (0.0743P)^2]$

where $P = (F_o^2 + 2F_c^2)/3$

Extinction correction: *SHELXTL* Extinction coefficient: 0.009 (3)

+ 0.9546P]

 $\Delta \rho_{\rm max} = 0.75 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.57 \text{ e } \text{\AA}^{-3}$

 $(\Delta/\sigma)_{\rm max} < 0.001$

Symmetry code: (i) $x, \frac{3}{2} - y, z$.

All H atoms were located from a difference Fourier and were refined as riding on their parent atoms, with displacement parameters set 20% larger than those of the attached atom.

Data collection: *XSCANS* (Siemens, 1996); cell refinement: *XSCANS*; data reduction: *XSCANS*; program(s) used to solve structure: *XS* in *SHELXTL* (Bruker, 1998); program(s) used to refine structure: *XL* in *SHELXTL*; molecular graphics: *XP* in *SHELXTL*; software used to prepare material for publication: *XCIF* in *SHELXTL*.

This research was supported in part by ACS–PRF 34779–AC5.

References

- Bruker (1998). SHELXTL (XCIF, XL, XP, XS). Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hodgson, D. J., Towle, D. K. & Hatfield, W. E. (1991). *Inorg. Chim. Acta*, **179**, 275–279.
- Siemens (1990). XEMP. Version 4.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1996). XSCANS. Version 2.20. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Urtiaga, M. K., Arriortua, M. I., Cortés, R. & Rojo, T. (1996). Acta Cryst. C52, 3007–3009.